sábado, 15 de mayo de 2010

video de carbohidratos

  • Banda Escobar Nayeli
  • Chisum Gonzalez Ana Karen
  • Montelongo Del Angel Damaris Yaneth
  • Sanchez Camacho San Juana Veronica
  • Velazquez Martinez Gpe. Ximena

domingo, 9 de mayo de 2010

collage de acidos nucleicos


Acidos nucleicos


Los ácidos nucleicos son macromoléculas, polímeros formados por la repetición de monómeros llamados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes (de millones de nucleótidos de largo).
El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico.


Tipos de ácidos nucleicos


Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:
por el glúcido (pentosa) que contienen: la desoxirribosa en el ADN y la ribosa en el ARN;
por las bases nitrogenadas que contienen: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN;
en los organismos eucariotas, la estructura del ADN es de doble cadena, mientras que la estructura del ARN es monocatenaria, aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr, y
en la masa molecular: la del ADN es generalmente mayor que la del ARN.


Nucleósidos y nucleótidos


Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unión formada por la pentosa y la base nitrogenada se denomina nucleósido. Cuando lleva unido una unidad de fosfato al carbono 5' de la ribosa o desoxirribosa y dicho fosfato sirve de enlace entre nucleótidos, uniéndose al carbono 3' del siguiente nucleótido; se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres


Listado de las bases nitrogenadas

Las bases nitrogenadas conocidas son:
adenina, presente en ADN y ARN
guanina, presente en ADN y ARN
citosina, presente en ADN y ARN
timina, exclusiva del ADN
uracilo, exclusiva del ARN


ADN

El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario, es decir, está formado por un solo polinucleótido, sin cadena complementaria.


ARN

El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:
El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.


Ácidos nucleicos artificiales

Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza, sintetizados en el laboratorio.

Ácido nucleico peptídico, donde el esqueleto de fosfato-(desoxi)ribosa ha sido sustituido por 2-(N-aminoetil)glicina, unida por un enlace peptídio clásico. Las bases púricas y pirimidínicas se unen al esqueleto por el carbono carbonílico. Al carecer de un esqueleto cargado (el ión fosfato lleva una carga negativa a pH fisiológico en el ADN/ARN), se une con más fuerza a una cadena complementaria de ADN monocatenario, al no existir repulsión electrostática. La fuerza de interacción crece cuando se forma un ANP bicatenario. Este ácido nucleico, al no ser reconocido por algunos enzimas debido a su diferente estructura, resiste la acción de nucleasas y proteasas.

Morfolino y ácido nucleico bloqueado (LNA, en inglés). El morfolino es un derivado de un ácido nucleico natural, con la diferencia de que usa un anillo de morfolina en vez del azúcar, conservando el enlace fosfodiéster y la base nitrogenada de los ácidos nucleicos naturales. Se usan con fines de investigación, generalmente en forma de oligómeros de 25 nucleótidos. Se usan para hacer genética inversa, ya que son capaces de unirse complementariamente a pre-ARNm, con lo que se evita su posterior recorte y procesamiento. También tienen un uso farmacéutico, y pueden actuar contra bacterias y virus o para tratar enfermedades genéticas al impedir la traducción de un determinado ARNm.

Ácido nucleico glicólico. Es un ácido nucleico artificial donde se sustituye la ribosa por glicerol, conservando la base y el enlace fosfodiéster. No existe en la naturaleza. Puede unirse complementariamente al ADN y al ARN, y sorprendentemente, lo hace de forma más estable. Es la forma químicamente más simple de un ácido nucleico y se especula con que haya sido el precursor ancestral de los actuales ácidos nucleicos.

Ácido nucleico treósico. Se diferencia de los ácidos nucleicos naturales en el azúcar del esqueleto, que en este caso es una treosa. Se han sintetizado cadenas híbridas ATN-ADN usando ADN polimerasas. Se une complementariamente al ARN, y podría haber sido su precursor.


collage de aminoacidos


aminoacidos


Un aminoácido, como su nombre indica, es una molécula orgánica con un grupo amino (-NH2) y un grupo carboxilico (-COOH; ácido). Los aminoácidos más frecuentes y de mayor interés son aquellos que forman parte de las proteínas. Dos aminoácidos se combinan en una reacción de condensación que libera agua formando un enlace peptídico. Estos dos "residuos" aminoacídicos forman un dipéptido. Si se une un tercer aminoácido se forma un tripéptido y así, sucesivamente, para formar un polipéptido. Esta reacción ocurre de manera natural en los ribosomas, tanto los que están libres en el citosol como los asociados al retículo endoplasmático.
Todos los aminoácidos componentes de las proteínas son alfa-aminoácidos, lo que indica que el grupo amino está unido al carbono alfa, es decir, al carbono contiguo al grupo carboxilo. Por lo tanto, están formados por un carbono alfa unido a un grupo carboxilo, a un grupo amino, a un hidrógeno y a una cadena (habitualmente denominada R) de estructura variable, que determina la identidad y las propiedades de los diferentes aminoácidos; existen cientos de cadenas R por lo que se conocen cientos de aminoácidos diferentes, pero sólo 20 forman parte de las proteínas y tienen codones específicos en el código genético.
La unión de varios aminoácidos da lugar a cadenas llamadas polipéptidos o simplemente péptidos, que se denominan proteínas cuando la cadena polipeptídica supera los 50 aminoácidos o la masa molecular total supera las 5.000 uma.


Clasificación


Existen muchas formas de clasificar los aminoácidos; las tres formas que se presentan a continuación son las más comunes.

Según las propiedades de su cadena

Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral:
Neutros polares, polares o hidrófilos : Serina (Ser, S), Treonina (Thr, T), Cisteína (Cys, C), Asparagina (Asn, N), Glutamina (Gln, Q) y Tirosina (Tyr, Y).
Neutros no polares, apolares o hidrófobos: Glicina (Gly, G), Alanina (Ala, A), Valina (Val, V), Leucina (Leu, L), Isoleucina (Ile, I), Metionina (Met, M), Prolina (Pro, P), Fenilalanina (Phe, F) y Triptófano (Trp, W).
Con carga negativa, o ácidos: Ácido aspártico (Asp, D) y Ácido glutámico (Glu, E).
Con carga positiva, o básicos: Lisina (Lys, K), Arginina (Arg, R) e Histidina (His, H).
Aromáticos: Fenilalanina (Phe, F), Tirosina (Tyr, Y) y Triptófano (Trp, W) (ya incluidos en los grupos neutros polares y neutros no polares).


Según su obtención


A los aminoácidos que necesitan ser ingeridos por el cuerpo para obtenerlos se los llama esenciales; la carencia de estos aminoácidos en la dieta limita el desarrollo del organismo, ya que no es posible reponer las células de los tejidos que mueren o crear tejidos nuevos, en el caso del crecimiento. Para el ser humano, los aminoácidos esenciales son:


Valina (Val)
Leucina (Leu)
Treonina (Thr)
Lisina (Lys)
Triptófano (Trp)
Histidina (His)
Fenilalanina (Phe)
Isoleucina (Ile)
Arginina (Arg)


A los aminoácidos que pueden ser sintetizados por el cuerpo se los conoce como no esenciales y son:



Alanina (Ala)
Prolina (Pro)
Glicina (Gly)
Serina (Ser)
Cisteína (Cys)
Asparagina (Asn)
Glutamina (Gln)
Tirosina (Tyr)
Ácido aspártico (Asp)
Ácido glutámico (Glu)


Estas clasificaciones varían según la especie. Se han aislado cepas de bacterias con requerimientos diferenciales de cada tipo de aminoácido.
Los datos actuales en cuanto a número de aminoácidos y de enzimas ARNt sintetasas se contradicen hasta el momento, puesto que se ha comprobado que existen 22 aminoácidos distintos que intervienen en la composición de las cadenas polipeptídicas y que las enzimas ARNt sintetasas no son siempre exclusivas para cada aminoácido. El aminoácido número 21 es la Selenocisteína que aparece en eucariotas y procariotas y el número 22 la Pirrolisina, que aparece sólo en arqueas (o arqueobacterias).